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Abstract

We consider the active health monitoring of rotordynamic systems in the presence of breathing shaft cracks. The shaft is

assumed to be supported by conventional bearings and an active magnetic bearing (AMB) is used in a mid-shaft or

outboard location as an actuator to apply specified, time-dependent forcing on the system. These forces, if properly chosen,

induce a combination resonance that can be used to identify the magnitude of the time-dependent stiffness arising from the

breathing mode of the shaft crack.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Many critical rotating machines such as compressors, pumps, and gas turbines continue to be used beyond
their expected service life despite the associated potential for failure due to damage accumulation. Therefore,
the ability to monitor the structural health of these systems is becoming increasingly important, and the term
structural health monitoring can be defined as the process of implementing a damage-detection strategy. This
strategy involves the observation of a structure over a period of time, the identification of features from these
measurements, and the analysis of these features to determine the current damage state of the system.

Current monitoring techniques can be loosely classified as either local or non-local in nature. Local methods
rely on measurements of the structure near the site of the damage, e.g., visual and ultrasonic methods. As such,
the location of the potential damage must be both known a priori and accessible to direct measurement. For
non-local techniques the measurement and identification of the system’s health is not necessarily correlated
with the physical location of the damage. In particular, vibration-based detection methods use the dynamic
response of the structure to infer the health of the system [1]. If the accumulated damage alters the dynamic
characteristics of the structure (e.g., mass, stiffness, dissipation), the measured response will change
accordingly. These changes are often recognized in terms of modal properties [2–4], although recently more
advanced techniques have been proposed based on, for example, bifurcations in reduced-order models [5],
nonlinear time-series analysis [6,7], and phase space reconstruction [8–10]. In each of these techniques the
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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changes in the observed features are identified with the accumulating level of damage. However, the success of
any vibration-based technique is limited by the sensitivity of the response to the accumulated damage [11].

The modeling and dynamical behavior of damaged structures has received substantial attention in the
literature (see the reviews by Dimarogonas [12] and Wauer [13]). Plaut and Wauer [14] consider the dynamical
behavior of an unbalanced rotating shaft and use the method of multiple scales to identify and analyze several
resonances in the system. Chondros and Dimarogonas [15] develop a consistent model for the vibrations of a
shaft with an open crack. However, for cracks which periodically open and close in rotating shafts, known as
‘‘breathing’’ cracks, the formulation is much more involved [16]. One simple model, developed by Gasch
[17,18], represents the breathing crack as a linear time-varying stiffness in the system.

Traditional methods for the detection of shaft cracks monitor the components of the measured vibration
signal that are multiples of the rotational speed under steady-state and transient operation. In addition, the
presence of a crack couples the axial, radial, and torsional vibrations of the shaft and several reported works
have used this coupling under external excitation as a means to identify the presence of cracks [19,20].
In addition, the spectral components of the shaft response under radial excitation can be used to identify
the presence of transverse shaft cracks. In particular, Iwatsubo et al. [21] consider the vibrations of a slowly
rotating shaft subject to either periodic or impulsive excitation. They identify specific harmonics in the
response spectrum, which are combinations between the rotation speed and excitation frequency, that can be
used to detect the presence of the crack. Also, Iwatsubo et al. note that the sensitivity of the response to the
magnitude of the damage depends on the value of the excitation frequency chosen for the detection. Finally,
Ishida and Inoue [22] consider the response of a horizontal rotor to harmonic external moments. Similar to the
present work, they identify forcing frequencies for which the response is sensitive to the presence of the
damage. Using the method of harmonic balance, a combination resonance is identified between nonlinear
stiffness terms, the operating speed, and the critical speed of the shaft, and the resulting vibration amplitude is
proportional to the amplitude of the nonlinearities, which are assumed proportional to the magnitude of the
shaft crack.

The majority of applications of AMBs are as active suspension systems for shafts or rotors. Several
components of an AMB are characterized by nonlinear behavior and therefore the entire system is inherently
nonlinear [23]. In addition to their use as support bearings, AMBs can also be used both as force actuators and
sensors [24]. For example, in a rotordynamic system Humphris [25] utilized AMBs for both support and as a
means to apply perturbation forces to the shaft, monitoring the response for health diagnosis. Likewise,
Kasarda et al. [26] proposed a method utilizing AMBs for the non-destructive evaluation of manufacturing
processes. Zhu et al. [27] use the model of Gasch [18] to examine the performance of optimal control methods
on the response of a cracked rotor supported by active magnetic bearings (AMBs) and find that the
introduction of a breathing crack alters the resulting vibration characteristics of the system and significantly
complicates the design and analysis of the AMB controller. However, they note that in certain operating
conditions these vibration characteristics can be used to detect the presence of the crack. In the present work,
AMBs are used as an actuator for applying multiple types of force inputs to a rotating structure for analysis of
the resulting system vibrations. The AMBs are used in conjunction with conventional support bearings, rather
than for rotor support, allowing their application to a more general class of rotating machinery than that of
purely magnetically supported rotors.

In this paper, the equations of motion for a simple Leval or Jeffcott rotor are first presented, incorporating
a breathing crack. These equations, linearized about the static equilibrium position, are then analyzed using
the method of multiple scales to identify the resonant operating conditions. In particular, a combination
resonance is identified in which the response is sensitive to the magnitude of the accumulating damage,
serving as a novel strategy for health monitoring in the system. Furthermore, this proposed damage
detection technique does not require the shaft to operate at a specific speed and can therefore be used
as an ‘‘on-line’’ health-monitoring strategy under normal loads and steady-state operating conditions.
This strategy is verified against numerical simulations of the original equations of motion and even in the
presence of noise the response is shown to be sensitive to the magnitude of the damage. The analytical
predictions for the response of the damaged system are shown to compare favorably with the numerical
results and finally, this serves as an explanation for the sensitivity of the damage detection noted earlier by
Iwatsubo et al. [21].
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2. Model

2.1. Equations of motion

The equations of motion for a simple rotor with a cracked shaft can be written in a stationary frame of
reference as [18,27]:

M€uþ C_uþ KðtÞu ¼ fg þ fu þ fAMB, (1)

where

M ¼
m 0

0 m

" #
; C ¼

c 0

0 c

" #
,

fg ¼
�mg

0

" #
; fu ¼

emÔ
2
cosðÔtÞ

emÔ
2
sinðÔtÞ

2
4

3
5.

fg represents the gravitational force, fu arises from the unbalance, fAMB is the external force vector from the
AMB, and KðtÞ is the time-varying stiffness of the cracked shaft. Finally, as shown in Fig. 1, the displacement
of the shaft center is uðtÞ and the rotation of the shaft is described by y, with the shaft assumed to be rotating at
constant angular speed Ô.

The time dependency of the stiffness matrix is assumed to arise from a ‘‘breathing crack’’ so that KðtÞ can be
written as

KðtÞ ¼ K0 þ DKðtÞ, (2)

where K0 represents the stiffness matrix of uncracked shaft and DK is the additive stiffness matrix that
describes the change in shaft stiffness with increasing damage, and typically the stiffness degrades with
increasing damage [18], although no attempt is made here to relate the crack geometry with changes in
stiffness. Instead this work focuses on the changes in the dynamical behavior of the system with variations in
the stiffness.

The displacement vector can be decomposed as

uðtÞ ¼ ueq þ vðtÞ, (3)

where ueq is the deflection of the uncracked rotating shaft due to gravity, such that

K0ueq ¼ fg. (4)

Here it is assumed that the deflection under the gravitational load is constant in time. Such is the case for an
isotropic shaft with stiffness:

K0 ¼
k0 0

0 k0

" #
(5)

and this form for K0 is assumed to hold so that ueq ¼ K�10 fg.
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Fig. 1. Cracked shaft model.
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In the absence of a rotating imbalance, the equations of motion in terms of v become

M€vþ C_vþ ðK0 þ DKðtÞÞv ¼ �DKðtÞueq þ fu þ fAMB. (6)

The above assumes that the small vibrational movement will not affect the additive stiffness matrix provided
jueqjbjvðtÞj, as is the case for a heavy shaft with a large sag and conditions of shaft whirl are precluded from
this analysis. With this assumption, the effect of the breathing crack is represented only in the linear time-
varying stiffness, although for deeper cracks the nonlinearity of the stiffness plays an important role [12].
2.2. Shaft stiffness

For a breathing crack that opens and closes once per shaft revolution, the additive stiffness matrix DK is
assumed to be time periodic, with period T ¼ 2p=Ô. Unfortunately, the development of an exact stiffness
model of a breathing crack from a fundamental model is quite complicated. Instead, following Gasch [18] the
time-varying stiffness is considered directly. In the rotating coordinate system (see Fig. 1), x is the coordinate
measured in the direction of the crack, n is the cross-crack direction coordinate. Therefore, in this rotating
frame of reference K is considered to be

Kðx;nÞðyÞ ¼
kx 0

0 kn

" #
¼

k0 � Dkx
1þ cosðyÞ

2

� �
0

0 k0 � Dkn
1þ cosðyÞ

2

� �
2
6664

3
7775. (7)

Here the stiffness is assumed to depend on the rotation of the shaft, where y is the angle between rotating
coordinate system and the reference frame in the ground and recall yðtÞ ¼ Ôt. Dkx and Dkn are the reduction of
stiffness at fully open crack in x and n directions, respectively. These quantities can be either experimentally
determined or empirically related to the crack length and hence the ‘‘health’’ of the shaft. For small cracks
(less than the radius of the shaft), Dkn is small compared to Dkx and can be neglected [18]. With this, the
stiffness matrix of the cracked rotor in the stationary coordinate system can be written as

KðyÞ ¼ k0

1 0

0 1

� �
�

Dkx

4

f ðyÞ gðyÞ

gðyÞ hðyÞ

" #
, (8)

where

f ðyÞ ¼ 1þ
3

2
cosðyÞ þ cosð2yÞ þ

1

2
cosð3yÞ

¼
XN

n¼0

pn cosðnyÞ, ð9aÞ

gðyÞ ¼
1

2
sinðyÞ þ sinð2yÞ þ

1

2
sinð3yÞ

¼
XN

n¼0

qn sinðnyÞ, ð9bÞ

hðyÞ ¼ 1þ
1

2
cosðyÞ � cosð2yÞ �

1

2
cosð3yÞ

¼
XN

n¼0

rn cosðnyÞ. ð9cÞ

In the absence of damage, the critical frequency of the shaft oscillations is
ffiffiffiffiffiffiffiffiffiffiffi
k0=m

p
, while the opening and

closing of the crack, synchronous with the rotational speed Ô of the shaft, introduces a time-varying stiffness.
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2.3. Harmonic AMB forcing

The applied AMB forcing is chosen to vary harmonically with frequency Ô2:

fAMB ¼
F 0;z cosðÔ2tÞ

0

" #
.

Notice that forcing is applied in the z direction only. The coordinates vðtÞ ¼ ½zðtÞ yðtÞ�T are scaled by the static
displacement zeq ¼ mg=k0 and time is scaled with the critical frequency, so that t ¼

ffiffiffiffiffiffiffiffiffiffiffi
k0=m

p
t. With these, the

non-dimensional equations of motion become

z00

y00

" #
þ 2�z

z0

y0

" #
þ

z

y

" #
� �b

f ðOtÞ gðOtÞ

gðOtÞ hðOtÞ

" #
z

y

" #
þ �a

z3

y3

" #

¼ g
cosðO2tÞ

0

" #
þ �dO2

cosðOtÞ

sinðOtÞ

" #
þ �b

f ðOtÞ

gðOtÞ

" #
þ

w1ðtÞ

w2ðtÞ

" #
ð10Þ

with

O ¼
Ôffiffiffiffiffiffiffiffiffiffiffi

k0=m
p ; O2 ¼

Ô2ffiffiffiffiffiffiffiffiffiffiffi
k0=m

p ; g ¼
F 0;z

k0zeq
,

�b ¼
Dkx

4k0
; �z ¼

c

2
ffiffiffiffiffiffiffiffiffi
k0m
p ; �d ¼

e

zeq
.

In these equations, the quantity � is simply a non-dimensional scaling parameter used to indicate the relative
sizes of the various parameters. The magnitude of the time-varying stiffness is �b. Moreover, b is identified as
the ‘‘damage’’ parameter because it represents the magnitude of the stiffness degradation assumed to scale
with the damage in the shaft. The AMB forces appear in the model as external excitation, of amplitude g and
frequency O2, and a weak cubic nonlinearity has been added to the stiffness of the system, described by the
parameter a. The mass unbalance is proportional to �d and finally, the terms w1ðtÞ and w2ðtÞ describe noise
added to the system representing stochastic forces and unmodeled dynamics. Both stochastic terms are
assumed to possess a normal distribution with standard deviation �n.

The resulting mathematical model can be described as two coupled nonlinear equations with both
parametric and external excitation. In this model, the critical speed of the shaft has been scaled to unity and
the remaining frequencies are relative to this value. In the analysis that follows, a combination resonance
is identified between the critical shaft frequency, the shaft rotational speed, and the external frequency of
the AMB excitation. The amplitude of the oscillations at this resonant operation is proportional to both
the magnitude of the external excitation g and, more importantly, the magnitude of the shaft damage,
described by the non-dimensional quantity �b in the above equation. Finally, this response is sensitive to
changes in O2, the frequency of the AMB excitation. This is expected to provide a means of identifying
marginal damage states.

3. Multiple scale analysis

In the absence of noise, with w1ðtÞ ¼ w2ðtÞ � 0, multiple scale analysis [28] is applied to analyze the
dynamical behavior of Eq. (10). The solution is assumed to take the form v ¼ v0 þ �v1 þ � � � and a slow time
scale is explicitly identified as Z ¼ �t, so that

d

dt
¼

q
qt
þ �

q
qZ

.

Substituting these into Eq. (10) and collecting powers of �, the first-order solution takes the form

z0 ¼ A1ðZÞ cosðtþ o1Zþ f1ðZÞÞ þ G cosðO2tÞ, (11a)
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y0 ¼ A2ðZÞ cosðtþ o1Zþ f2ðZÞÞ, (11b)

where

G ¼
g

1� O2
2

.

The quantity G reflects, to Oð1Þ, the amplitude of the response at the AMB excitation frequency. In addition,
for resonant forcing conditions, listed in Table 1, the response of the system also contains a harmonic
component near the critical frequency of the shaft, at 1þ �o1. In the method of multiple scales the frequency
shift o1 and equations governing the slowly varying amplitude and phase, Ai and fi, respectively, are
determined from the Oð�1Þ equations by requiring that secular terms vanish. This ensures that the
approximation given in Eq. (11) is uniform in time.

As listed in Table 1, the internal resonance conditions are satisfied only for specific values of O—the AMB
forcing does not effect this conditions. However, the operating speed is an independent quantity so that this
condition cannot be arbitrarily satisfied. While the external resonance conditions do depend on O2, the
predicted responses from the multiple scales analysis are independent of the damage parameter, b. Thus, these
conditions cannot be used to characterize the magnitude of b from vibration data. In contrast, the response of
the system when operated in a combination resonance condition is sensitive to the magnitude of the damage
parameter b. Therefore, this work focuses on the combination resonance as a mechanism for identifying the
damage parameter. Specifically, given the operating speed the combination resonance condition can be
satisfied with a proper choice of O2 and the resulting amplitude scales linearly with b. The analysis below is
focused on the condition O2 ¼ O%

2 � jnO� 1j and the response for the remaining condition is analogous.
Upon application of the method of multiple scales near the combination resonance, the resulting slow flow

equations in the z direction can be written as

dA1

dZ
¼

bpnG
4

sinf1 � zA1, (12a)

df1

dZ
¼

bpnG
4A1

cosf1 � s2 þ
bp0

2
þ

3a
4

A2
1

2
þ G2

� �
, (12b)

where s2 is the detuning from the exact resonance, that is O2 ¼ O%

2 þ �s2. This resonance arises from the
interaction between the critical speed of the shaft (assumed to be unity in this non-dimensionalization), the
AMB frequency O2 and one of the harmonic terms given in Eq. (9a), so that the amplitude of the specific time-
dependent stiffness term in resonance (from Eq. (9a)), pn, appears above. Similar results can be derived for the
vibration amplitude in the y direction.

Stationary solutions of the original Eq. (10) correspond to equilibrium points in Eq. (12). From this, the
amplitude-detuning relationship is obtained as

bp0

2
� s2 þ

3a
4

A2
1

2
þ G2

� �
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bpnG
4A1

� �2

� z2

s
(13)
Table 1

Resonant forcing conditions

Resonance condition Description

1 O ¼ 1
3;

1
2;

2
3; 1; 2 Internal

2 O2 ¼ 1; 3 External

3 O2 ¼ jnO� 1j; jnOþ 1j; n ¼ 1; 2; 3 Combination
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and one may also solve for the stationary phase f1. In the absence of the nonlinearity (a ¼ 0), the response
amplitude becomes

A1 ¼
bpnG

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ ðs2 � ðbp0=2ÞÞ

2
q .

For aa0 the relationship between A1 and s2 cannot be inverted to determine A1 in terms of s2. Instead,
Eq. (13) is solved numerically for A1. Representative results are shown in Fig. 2.

In Fig. 2a, the linear response (a ¼ 0) is shown as b varies. As expected, the maximum response increases
with increasing b, although the detuning at which the vibration characteristics are most sensitive to the
damage also shifts. In Fig. 2b, as the damping ratio z increases the amplitude decreases while in Fig. 2c, the
response curve bends with increasing magnitude of a, the coefficient of the nonlinearity. This behavior is
typical of systems with cubic nonlinearities [28]. However, the maximum amplitude is independent of this
coefficient.

From Eq. (13) the maximum amplitude of the response is determined to be

A%

1 ¼
pnG
4z

� �
b, (14)

which occurs at a detuning

s%

2 ¼
bp0

2
þ

3aG2

8

bpn

4z

� �2

þ 2

 !
. (15)

Thus, when the combination resonance is excited the maximum amplitude of the observed vibrations that
occur at the critical frequency of the shaft scale linearly with b, the damage parameter, and can be used to
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Fig. 2. Damage effect on response amplitude versus detuning curves. Unless otherwise noted, b ¼ 1:00, a ¼ 0:25, z ¼ 0:05 (n ¼ 1,

g ¼ 1:50, O ¼ 5, O2 ¼ 4): (a) b ¼ ð0:125; 0:50; 1:00Þ, a ¼ 0; (b) z ¼ ð0:05; 0:10; 0:25Þ and (c) a ¼ ð0; 0:50; 1:00Þ.
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detect and quantify the damage. Notice that the maximum amplitude of the response scales inversely with z
and is independent of a, the strength of the nonlinearity. Finally, as b increases the detuning at which the
maximum response occurs varies as shown in Fig. 3. For a ¼ 0 the shift is linear and for non-zero a the
detuning varies quadratically with b.
4. Fourier analysis

In Eq. (10), the combination resonance condition is utilized to estimate the shaft damage. From the multiple
scales analysis, when the combination resonance condition is satisfied, the amplitude of the response at the
critical frequency is predicted to be proportional to b. The results from the multiple scale analysis can be
compared against the direct numerical simulation of Eq. (10), obtained using a fourth-order Runge–Kutta
algorithm in MATLAB. In the following simulations the stochastic forces are assumed to possess a normal
distribution with standard deviation �n.

Fig. 4 depicts two such responses in the z direction for simulations without noise (n ¼ 0), while a Fast
Fourier Transform (FFT) is used to quantify the response, as shown in Fig. 5. For ba0 the FFT of the
solution in the z direction has two primary peaks: one at the shaft critical frequency and a second at the
� 
* 2

−2.0

−1.0

0.0

1.0

2.0

� 
0.0 0.5 1.0 1.5 2.0

�1 = − 0.25
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�1 = − 0.50

Fig. 3. Shift in the location of the maximum response (z ¼ 0:10, n ¼ 1, G ¼ 1:00).
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Fig. 4. Numerical integration; zðtÞ (a ¼ 0:25, b ¼ 1:00, g ¼ 1:50, z ¼ 0:10, n ¼ 0, � ¼ 0:10, O ¼ 5): (a) O2 ¼ 2:75 and (b) O2 ¼ 4:00.
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external excitation frequency from the AMBs. Recall that the external forcing is applied only in the z

direction. The following analysis focuses on the response in the z direction as a basis for damage detection.
As illustrated in Figs. 4 and 5, the amplitude at the critical frequency (unity in this non-dimensionalization)

is considerably larger when the AMB forces occur at the combination resonant frequency (O2 ¼ j5� 1j ¼ 4)
than when the AMB is driven at an arbitrary frequency (e.g., O2 ¼ 2:75) away from the resonant frequency. It
is noted that both O and O2 are chosen away from both the internal and external resonances (see Table 1).

In the damaged system a peak will occur near the critical frequency, whose amplitude depends on the
magnitude of the damage parameter b. As illustrated in Fig. 6, three excitation frequencies are chosen near the
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Fig. 5. Comparison of the FFT amplitudes at resonant and non-resonant forcing frequencies (a ¼ 0:25, b ¼ 1:00, g ¼ 1:50, z ¼ 0:10,
n ¼ 0, � ¼ 0:10, O ¼ 5). The non-resonant response, with O2 ¼ 2:75, is shown as the solid line, while the resonant response, O2 ¼ 4 is

dashed: (a) non-resonant; O2 ¼ 2:75 and (b) resonant; O2 ¼ 4:00.

�
1

�
0 2 4 6 8 10

10

10

10

10

10

10−1

−2

−3

− 4

− 5

− 6

100

�
1

10

10

10

10

10

10−1

−2

−3

− 4

− 5

− 6

100

�
1

10

10

10

10

10

10−1

−2

−3

− 4

− 5

− 6

100

(a) � 
0 2 4 6 8 10

(b)

� 
0 2 4 6 8 10

(c)

Fig. 6. Comparison of FFT amplitudes below, at and above resonant forcing frequencies for both undamaged and damaged systems

(a ¼ 0:25, g ¼ 1:50, z ¼ 0:10, � ¼ 0:10, O ¼ 5). Solid and dashed lines represent undamaged (b ¼ 0) and damaged (b ¼ 1:00) systems,

respectively: (a) s2 ¼ �1:00, (b) s2 ¼ 0:50 and (c) s2 ¼ 1:00.
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combination resonance: s2 ¼ �1:00 (below resonance), s2 ¼ 0:50 (resonance), and s2 ¼ 1:00 (above
resonance). The amplitude of the external AMB forcing g remains constant between these cases and the
response of the undamaged system is relatively insensitive to variations in the external forcing frequency. In
contrast to the undamaged system (b ¼ 0), the damaged systems show a peak at the critical frequency and as
expected from the multiple scale analysis, the amplitude of this component depends on the detuning from the
combination resonance.

Therefore, as the external AMB forcing frequency varies near the combination resonance, the magnitude of
the response at the critical frequency varies as well. In Fig. 7a, the maximum amplitude near the critical
frequency is shown as the AMB detuning varies. Each curve corresponds to a different value of b, the damage
parameter. Clearly, as the damage increases the amplitude of the response increases as well, accompanied by a
shift in the value of detuning at which the maximum occurs. These results, obtained from the original
equations, can be compared to the results from the multiple scales analysis shown in Fig. 7b. When the system
is excited away from the resonant frequency, the sensitivity of the response to the damage is negligible—the
response near the critical frequency is small. Only when the system is driven near the resonant forcing is the
amplitude of the response comparable to (or larger than) the component of the response at the AMB forcing
frequency.

Finally, as b increases the amplitude of the response at the critical frequency increases as well. From the
multiple scales analysis, this amplitude is expected to increase linearly in b (see Eq. (14)), which is verified from
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Fig. 7. Damaged FFT amplitude in the vicinity of the resonant forcing frequency (a ¼ 0:25, g ¼ 1:50, z ¼ 0:10, O ¼ 5). The dashed curve

projected onto the horizontal plane shows the location of the maximum response: (a) numerical results and (b) analytical results.
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the Fourier analysis of the original equations. In Fig. 8 the amplitude at the critical frequency is shown as a
function of b, for three different noise levels, as measured by their standard deviation �n. In the absence of
noise for n ¼ 0, shown with open circles, the amplitude of the response at the fundamental frequency increases
almost linearly with increasing b. This amplitude, obtained from numerical simulations of Eq. (10), is almost
coincident with predictions from the multiple scales analysis, from Eq. (14), shown with the solid light gray
line. As the magnitude of the noise increases, for sufficiently large damage the amplitude continues to increase
with increasing b. However, for low values of b the response of the system is lost within the underlying
response due to the noise.
5. Discussion and conclusions

The current work investigates the vibrational response of a cracked rotating shaft subject to applied forces
from AMBs. The analysis is based on a phenomenological model, developed originally by Gasch [17], which
incorporates the breathing of the crack, nonlinear shaft bending stiffness, and the external forces from the
AMBs. Through the method of multiple scales a combination resonance is identified between the critical
frequency of the shaft, the operating speed of the shaft, and the frequency of the AMB excitation. Therefore,
because the excitation frequency can be chosen arbitrarily, this resonance condition can be satisfied for any
combination of critical shaft frequency and operating speed. Moreover, when this resonance occurs the
spectral analysis of the damaged shaft vibration response contains a component at the critical frequency (in
addition to a component at the excitation frequency). The amplitude of this component at the critical
frequency is proportional to the magnitude of the time-dependent stiffness introduced by the breathing crack.
Therefore, this relationship provides a mechanism to detect and quantify the presence of breathing cracks in
rotating shafts subject to harmonic forcing applied by AMBs. Current efforts are directed toward
experimental verification of this work and the application of more advanced damage detection techniques.
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